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Intermolecular interactions and the thermodynamic properties
of supercritical fluids
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The role of different contributions to intermolecular interactions on the thermodynamic properties
of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the
energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adia-
batic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed
of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials.
These properties were obtained for a wide range of temperatures, pressures, and densities. For each
thermodynamic property, an excess value is determined to distinguish between attraction and repul-
sion. It is found that the contributions of intermolecular interactions have varying effects depending
on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities,
isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the
Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both re-
pulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both
maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical
Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a com-
mon point via the same power law relationship as the phase coexistence curve with an exponent of
β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in super-
critical fluids. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803855]

I. INTRODUCTION

Thermodynamic properties have an important role in
many biological, chemical, physical, and technical processes.
Considerable emphasis has been placed on modelling and
predicting thermodynamic properties using empirical corre-
lations, statistical theories, and equations of state.1, 2 Molecu-
lar simulation3 is a useful alternative to conventional theories
because, when used properly, it provides unambiguous infor-
mation regarding the merit of the underlying model. Increas-
ingly, molecular simulation is being used to provide worth-
while predictions to both guide and supplement experimental
work.

In general, the use of molecular simulation requires the
a priori postulation of an intermolecular potential to evalu-
ate inter-particle forces or energies. The Lennard-Jones (LJ)
potential is arguably the most commonly used intermolecular
potential because it incorporates the salient features of inter-
particle interactions. For the LJ potential, the intermolecular
energy (u) between particles i and j separated by a distance rij

is obtained from

u(rij ) = 4ε

((
σ

rij

)12

−
(

σ

rij

)6
)

, (1)

where ε and σ are the characteristic energy and distance pa-
rameters, respectively. Equation (1) represents the most com-
monly used “12-6” variant of the LJ potential whereas other
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choices of exponents are possible resulting in different ob-
served behavior.4 The LJ potential incorporates both attractive
and repulsive interactions. Despite its relative simplicity, the
LJ potential can reproduce the full range of fluid properties,
including both solid-liquid4 and vapor-liquid coexistence.5

Although the LJ potential applies primarily to atomic systems
or small molecules, it is also commonly used in the develop-
ment of force fields3 for macromolecules.

It has long been recognised1 that the properties of fluids
are often dominated by repulsive interactions and various sep-
arations of the contributions of inter-particle interactions have
been suggested. McQuarrie and Katz6 proposed a separation
of the LJ potential based on the r−12 and r−6 terms. Barker and
Henderson7 separated the LJ potential based on regions that
yield positive (rij < σ ) and negative (rij > σ ) values. Weeks
et al.8 identified purely repulsive and attractive contributions
by splitting the LJ potential at a separation of rij = 21/6σ . The
repulsive part of this separation is now commonly referred to
as the Weeks-Chandler-Anderson (WCA) potential. It is the
LJ potential truncated at the minimum potential energy at a
distance rij = 21/6σ on the length scale and shifted upwards
by the amount ε on the energy scale such that both the energy
and force are zero at or beyond the cut-off distance

u(rij ) =
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Equation (2) is a purely repulsive potential as such it
can be only used for a limited range of properties. For
example, it predicts solid-liquid equilibria but not vapor-
liquid equilibria.

The LJ and WCA potentials have been widely investi-
gated either as stand alone potentials or they have been in-
corporated as part of force fields for molecular systems.9, 10 In
particular, the phase behavior of the LJ and WCA potentials is
very well documented in the literature.3, 4, 11 However, knowl-
edge of the thermodynamic properties of the LJ and WCA
potentials remains incomplete with available molecular simu-
lation data largely confined12 to quantities such as pressure
(p), potential energy (U), isochoric (CV) and isobaric (Cp)
heat capacities. In contrast, other thermodynamic properties
such as the thermal pressure coefficient (γ v), thermal expan-
sion coefficient (αp), isothermal (βT) and adiabatic (βS) com-
pressibilities, Joule-Thomson coefficient (μjT), and the speed
of sound (w0) are much less commonly reported.13–16 Further-
more, simulations of thermodynamic properties in general are
often confined to state points at ambient temperatures.

The relative lack of data can be partly attributed to the
fact that only a few thermodynamic properties can be ob-
served directly from conventional molecular simulations. The
U, p, and temperature (T) are the only directly observable
quantities available from microcanonical (NVE) ensemble
simulations, which maintain a constant number of particles
(N), volume (V), and total energy (E). This means that the cal-
culation of other thermodynamic quantities requires the use
of fluctuation formulas or equations of state.17, 18 Lustig19–22

showed that, in principle, it is possible to calculate all thermo-
dynamic state variables from key derivatives obtained directly
from either molecular dynamics (MD) or Monte Carlo (MC)
simulations. The method is based on the exact expressions for
the thermodynamic state variables in the NV E �P �G ensemble,
which maintains both constant linear momentum ( �P ) and an
additional quantity ( �G) that is related to the initial position of
the center of mass.

The advantage of the NV E �P �G method is that it allows
us to directly obtain all the thermodynamic quantities of a
fluid from a single MD simulation. We will utilize this fea-

ture to comprehensively determine the full range of thermo-
dynamic properties over a wide range of supercritical state
points. By directly comparing the LJ and WCA results, our
aim is to determine the role of different aspects of molecu-
lar interactions. The focus of this work is the near supercrit-
ical region in which fluids exhibit interesting behavior such
as percolation transitions in water.23 In particular, we investi-
gate the occurrence of maxima and minima in thermodynamic
properties in the supercritical phase.

II. MD SIMULATIONS

A. Overview of the NVE �P �G method

The method has been discussed in detail in Refs. 19, 24,
and 25 and only a brief outline of the salient features is given
here. The fundamental equation of state for the system is de-
fined by the entropy (S) postulate,24 i.e.,

S(N,V,E, �P , �G) = k ln �(N,V,E, �P , �G), (3)

where �(N,V,E, �P , �G) is the phase-space volume and k is
the Boltzmann constant. The basic phase-space functions are
then introduced as an abbreviation representing the deriva-
tives of the phase-space volume with respect to the indepen-
dent thermodynamic state variables

�mn = 1

ω

∂m+n�

∂Em∂V n
, (4)

where ω is the phase-space density. The exact derivation of
the phase-space function is quite involved and the full expres-
sion is given in Ref. 24. A feature of the determination of the
� terms is the evaluation of volume derivatives of the poten-
tial energy

∂nU

∂V n
= 1

3nV n

N−1∑
i=1

N∑
j=i+1

n∑
k=1

an kr
k
i j

∂ku

∂rk
i j

, (5)

where the coefficients an k are constructed using a recursion
relation. All thermodynamic state variables are then express-
ible in terms of the phase-space function. The resulting ther-
modynamic state variables used in this work are summa-
rized in Table I. In effect, the NV E �P �G ensemble simulations

TABLE I. Thermodynamic properties expressed in terms of phase-space functions.

Temperature T = (
∂E
∂S

)
V

= � 00
k

Pressure p = T
(

∂S
∂V

)
E

= � 01

Isochoric heat capacity CV =
[(

∂2S

∂E2

)
V

]− 1 = k (1 − � 00 � 20)−1

Thermal pressure coefficient γV =
(

∂p
∂T

)
V

= k
� 11−� 01 � 20

1−� 00 � 20

Isothermal compressibility β−1
T = −V

(
∂p
∂V

)
T

= V

[
�01(2�11−�01�20)−�00�2

11
1−�00�20

− �02

]

Adiabatic compressibility β−1
S = −V

(
∂p
∂V

)
S

= V [�01 (2�11 − �01�20) − �02]

Speed of sound w2
0 = − V 2

M

(
∂p
∂V

)
S

= V 2

M
[�01 (2�11 − �01�20) − �02]

Thermal expansion coefficient αP = βT γV

Isobaric heat capacity CP = CV
βT
βS

Joule-Thomson coefficient μJ T = V
T γV βT −1

CP
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FIG. 1. 
U as a function of (a) density at different temperatures correspond-
ing to ϕ = 1.17 (black �), 1.4 (blue �), 1.6 (pink �), 1.8 (green �), and 2.0
(dark blue �); and (b) temperature at different densities corresponding to ρ

= 0.1 (black �), 0.2 (red ●), 0.25 (blue �), 0.3 (pink �), 0.35 (green �), and
0.4 (dark blue �). The solid lines are for guidance only.

simply involve implementing a conventional NV E �P simula-
tion while keeping track of the volume derivatives of the in-
termolecular potential required for the evaluation of the ther-
modynamic quantities.

B. Simulation details

The NV E �P �G MD simulations were performed for
a homogenous fluid of 2000 particles interacting via
the LJ and WCA potentials. The normal conventions
were used for the reduced density (ρ∗ = ρσ 3), tem-
perature (T ∗ = kT/ε), potential energy (U∗ = U/Nε),
pressure (p∗ = pσ 3/ε), heat capacities (C∗

p,V = Cp,V /k),
compressibilities (β∗

T ,S = βT,S ε/σ 3), thermal pressure co-
efficient (γ ∗

V = γV σ 3/k), thermal expansion coefficient
(α∗

P = αP ε/k), speed of sound (w∗
0 = w0

√
m/ε), where m is

the mass of the particles, and the Joule-Thomson coefficient
(μ∗

J T = μJ T k/σ 3). All quantities quoted in this work are in
terms of these reduced quantities and the asterisk superscript
will be omitted in the rest of the paper.

FIG. 2. (a) p for a LJ fluid and (b) 
p as a function of density at different
constant temperatures corresponding to ϕ = 1.17 (black �), 1.25 (red ●), 1.4
(blue �), 1.6 (pink �), 1.8 (green �), and 2.0 (dark blue �). The solid lines
are for guidance only.

The equations of motion were integrated using a five-
value Gear predictor-corrector scheme3, 24 with a time step of
2 fs. For each state point, simulation trajectories were run for
6 or 10 × 106 time steps (12 or 20 ns) with 5 or 8 × 106 time
steps (10 or 16 ns) used to equilibrate the WCA or LJ systems,
respectively. For the LJ potential, the cut-off radius was 6.5 σ .
Conventional long-range corrections3 were used for U and
p, whereas the long-range corrections for the volume deriva-
tives were calculated from the formulas reported by Meier and
Kabelac.24 In Figs. 1–12, error bars are not shown because, in
most cases, the calculated statistical uncertainties of the data
points are similar to the size of the symbols.

III. RESULTS AND DISCUSSION

At all densities and temperatures, matching simulations
were performed for both the LJ and WCA potentials to de-
termine the thermodynamic properties. The ranges of tem-
peratures and densities for our simulations were 1.312 ≤ T
≤ 2.624 and 0.1 ≤ ρ ≤ 1.0, respectively. It is convenient
to represent temperatures as multiples of the reduced critical
temperature of the LJ fluid,27 Tc = 1.312. We denote these
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FIG. 3. 
p as a function of temperature at different constant densities corre-
sponding to ρ = 0.1 (black �), 0.2 (red ●), 0.25 (blue �), 0.3 (pink �), 0.35
(green �), and 0.4 (dark blue �). The solid lines are for guidance only.

multiples using the symbol ϕ = T/Tc, where, for example,
ϕ = 1.05 means that T = 1.05 × Tc = 1.3776. The simulations
are reported at supercritical temperatures, which means that
the fluid is in a single homogeneous phase at every possible

FIG. 4. (a) 
βS and (b) 
βT as a function of density at different constant
temperatures corresponding to ϕ = 1.17 (black �), 1.25 (red ●), 1.4 (blue
�), 1.6 (pink �), 1.8 (green �), and 2.0 (dark blue �). The solid lines are for
guidance only.

FIG. 5. γ V as a function of temperature at different constant densities for
the LJ (symbols) and WCA (solid lines) potentials. Results are shown for ρ

= 0.1 (black �), 0.2 (red ●), 0.25 (blue �), 0.3 (pink �), 0.35 (green �), and
0.4 (dark blue �). The solid lines are for guidance only.

density. In contrast, simulations at sub-critical temperatures
would be limited to smaller discrete ranges of densities corre-
sponding to either homogenous liquid or vapor phases. Finite
size effects preclude the investigation of the critical point with
the methods used here.

In most cases, instead of illustrating the results sepa-
rately, we have calculated the difference (
) between the LJ
and WCA results, i.e.,


U = ULJ − UWCA


p = pLJ − pWCA


βS,T = βS,T ,LJ − βS,T ,WCA


αp = αp,LJ − αp,WCA


Cp,V = Cp,V,LJ − Cp,V,WCA


μJT = μJT,LJ − μJT,WCA


w0 = w0,LJ − w0,WCA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

FIG. 6. 
αp as a function of density at different constant temperatures cor-
responding to ϕ = 1.17 (black �), 1.25 (red ●), 1.4 (blue �), 1.6 (pink �),
1.8 (green �), and 2.0 (dark blue �). The solid lines are for guidance only.
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FIG. 7. (a) Comparison of LJ CV values obtained in this work as a func-
tion of density at different constant temperatures of T = 1.3 (black �), 1.4
(blue ●), 1.6 (green �), and 1.8 (purple �) with MC results reported by
Freasier et al.33 (identified by the corresponding open symbols); and (b) 
CV
as a function of density at different constant temperatures corresponding to
ϕ = 1.17 (black �), 1.25 (red ●), 1.4 (blue �), 1.6 (pink �), 1.8 (green �),
and 2.0 (dark blue �). The solid and dashed lines are for guidance only.

In effect, these difference values represent “excess” properties
relative to the WCA potential. The kinetic or ideal gas term,
common to both LJ and WCA simulations, is eliminated by
the definition of these excess terms. The values obtained from
Eq. (6) can be interchangeably interpreted as either (a) the in-
fluence of WCA interactions or (b) the influence of the well
section of the LJ potential. Subtracting the WCA contribution
does not entirely exclude repulsion because the steepness of
the LJ well at intermolecular separations close to σ indicates
the onset of inter-particle repulsion regardless of the fact that
u(rij) is negative. There is also the issue that the separation at
which u(rij) = 0 does not match exactly, i.e., rij = 21/6σ for
the WCA potential compared with rij = σ for the LJ potential.
However, even with these caveats, Eq. (6) can reasonably be
expected to isolate the different inter-particle influences that
approximately correspond to the Barker-Henderson7 separa-
tion of the LJ potential.

An alternative to these difference properties, would be to
perform separate simulations for the WCA potential and an
identified “attractive” part of the LJ potential. For example,
Morsali et al.26 have reported heat capacity calculations using

FIG. 8. (a) Cp for the LJ potential and (b) 
Cp as a function of density at
different constant temperatures corresponding to ϕ = 1.17 (black �), 1.25
(red ●), 1.4 (blue �), 1.6 (pink �), 1.8 (green �), and 2.0 (dark blue �). The
solid lines are for guidance only.

potentials that are purely attractive and repulsive as originally
proposed by Weeks et al.8 However, the thermodynamic prop-
erties obtained from such an approach are arguably fictitious
because no real fluid can exist with purely attractive interac-
tions. Therefore, the difference values reported here provide a
more realistic indication of the contribution from the different
types of interaction.

A. Potential energy and pressure

Values of 
U as functions of density and temperature
are illustrated in Fig. 1. Figure 1(a) shows the results over the
entire range of densities for different isotherms (ϕ = 1.17–
2). It is apparent that, for all isotherms, 
U decreases almost
linearly with increasing density. More remarkably, the differ-
ent isotherms are almost indistinguishable from each other,
which clearly shows the dominance of the WCA potential
in determining the potential energy of the fluid. Figure 1(b)
shows the temperature dependence of 
U at different iso-
chores. For each isochore, 
U increases with increasing tem-
perature. However, the rate of increase is very small and as
such 
U is almost independent of temperature. This enables
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FIG. 9. (a) μJT for the LJ potential and (b) 
μJT as a function of density
at different constant temperatures corresponding to ϕ = 1.17 (black �), 1.25
(red ●), 1.4 (blue �), 1.6 (pink �), 1.8 (green �), and 2.0 (dark blue �). The
solid lines are for guidance only.
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FIG. 10. Comparison of the Joule-Thomson inversion curve reported in this
work (blue �) with data reported from MC (red ●, Ref. 36) and MD (green
�, Ref. 14 and black �, Ref. 39) simulations.

FIG. 11. (a) w0 for the LJ potential and (b) 
w0 as a function of density
at different constant temperatures corresponding to ϕ = 1.17 (black �), 1.25
(red ●), 1.4 (blue �), 1.6 (pink �), 1.8 (green �), and 2.0 (dark blue �). The
solid lines are for guidance only.

us to conclude that repulsive interactions are largely responsi-
ble for the temperature-dependence of U for the LJ fluid. For
a real fluid, in the absence of repulsive interactions, the tem-
perature dependence of E would arise mainly from the ideal
gas term.

It is very well known that pressure is a continuous func-
tion of density and sensitive to the shape of the potential.28

Values of both pLJ and 
p as a function of density at different
constant temperatures are illustrated in Fig. 2. It is apparent
from Fig. 2(a) that the pressure isotherms for the LJ poten-
tial are shifted to higher pressures when the temperature is in-
creased. In contrast, the values of 
p for the various isotherms
are almost indistinguishable even at relatively high densities.
Therefore, WCA repulsion dominates pressure at all densities.

Values of 
p as a function of temperature for differ-
ent isochores are illustrated in Fig. 3. In the absence of the
WCA contribution, the pressure of a LJ fluid is independent
of temperature, depending only on density. This behavior is
consistent with the near temperature-independent behavior of
the potential energy (Fig. 1(b)). If the effect of inter-particle-
repulsion were excluded from a real fluid, p would only be
almost exclusively dependent on temperature via the ideal gas
term.
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FIG. 12. Temperature-density behavior of the supercritical maxima (open
symbols) and minima (closed symbols) of Cp(♦,�), CV(
, �), and αT (�)
for a Lennard-Jones fluid compared with its vapor-liquid coexistence curve
(_____, Ref. 46). The red lines linking the maxima and minima heat capacity
data were obtained by fitting the data using the phase coexistence power re-
lationship (Eq. (8)) with an exponent of β = 0.32. The vapor-liquid critical
point (● CP, T = 1.312, ρ = 0.316, and p = 0.128, Ref. 27) and temperature
extremes (red ● TE) for both CV (T = 1.667, ρ = 0.382, and p = 0.384) and
Cp (T = 2.905, ρ = 0.539, and p = 2.550) are identified.

Plačkov and Sadus29 have previously identified the con-
tribution of both r−12 and r−6 interactions to the pressure and
energy for the vapor-liquid coexistence curve of the LJ poten-
tial. They concluded that the two contributions were of similar
magnitude at sub-critical conditions. However, for the reasons
discussed above, the current approach is likely to be a better
alternative for accurately quantifying the relative influence of
different types of particle interactions.

B. Isothermal and adiabatic compressibilities

The isothermal compressibility is positive in the one
phase region. For an ordinary liquid, isothermal compressibil-
ity increases with temperature as it becomes less dense. Val-
ues of βT calculated from the WCA potential are relatively
small compared to the values from the LJ fluid. At high den-
sities such as ρ = 0.6, the βT value for the WCA potential
is typically a third of the value obtained for the LJ potential.
The relative difference between the WCA and LJ values in-
crease with decreasing density. At low densities (ρ < 0.3),
the value of βT obtained from the LJ potential is often several
times the WCA value. Similar trends are observed for βS, al-
though the difference in relative magnitudes is not as great.

Values of 
βS and 
βT as a function of density at differ-
ent constant temperatures are illustrated in Fig. 4. As shown
in Fig. 4(a), the adiabatic compressibility decreases monoton-
ically with density in the low to mid density region (ρ < 0.4).
A steady decrease in compressibility is observed for ρ > 0.4
and it approaches zero for ρ > 0.6 at all temperatures. A

similar observation can be made for values of 
βT at values
of ϕ < 1.25. However, at lower temperatures (ϕ = 1.25 and
1.17), there is a considerable increase in 
βT, particularly at
ρ < 0.3. It is well known1 that the value of βT diverges at the
critical point (ϕ = 1, ρ = 0.312). Although both ϕ = 1.25
and 1.17 represent supercritical conditions, it is apparent that
there is an influence from the critical point. The scatter of the
data is similar to that experienced in the vicinity of the critical
point due to finite size effects.3

The apparent maximum of βT at ϕ = 1.25 and 1.17
is a manifestation of a well-known phenomenon30 in which
isotherms of derivative thermodynamic properties are ob-
served to pass through a maximum in the supercritical phase.
It is also observed for both isochoric and isobaric heat capac-
ities and the thermal expansion coefficient. The locus of such
maxima extends from above the critical temperature to a max-
imum supercritical temperature. In the vicinity of the critical
point the different maxima lines merge into a single Widom
line.30 The origin of this phenomenon, which is also observed
experimentally,31 remains unresolved. It has been described32

as a supercritical extension of the vapor pressure curve.
This phenomenon and the general behavior of both βT

and βS are overwhelmingly governed by non-WCA interac-
tions, i.e., interactions at intermolecular separations in the LJ
potential well. It is of interest that the values of 
βS are much
less influenced by the proximity to the critical point.

C. Thermal pressure coefficient

Values of γ V for the LJ and WCA potentials as a function
of temperature at different constant densities are illustrated in
Fig. 5. The comparison indicates that values of γ V obtained
for the two potentials are almost identical at most tempera-
tures or densities. Figure 5 also shows that for each isochore,
γ V for both potentials is almost constant with only a small
negative gradient. It is only at low temperatures and higher
densities that some differences are apparent. The close sim-
ilarity of the values obtained for the two different potentials
strongly indicates that γ V depends only on the repulsive part
of the potentials.

D. Thermal expansion coefficient

The thermal expansion coefficient is the measure of the
tendency of matter to change volume in response to a change
in temperature. At temperatures close to the critical point, the
value of αp diverges. The divergence of αp is caused by its
dependence on the isobaric heat capacity.

Values of 
αp as a function of density at different con-
stant temperatures are illustrated in Fig. 6. The values calcu-
lated from the LJ potential are higher than values calculated
from the WCA potential, which means the 
αp values depend
mainly on the contribution from the LJ potential. At high tem-
peratures (ϕ = 2.0, 1.8, and 1.6) a maximum is observed in
the value of 
αp. Brazhkin et al.32 estimated that there are
αp maxima at temperatures up to ϕ = 2.8. These maxima,
become progressively more prominent as the temperature is
further decreased (ϕ = 1.4, 1.25, and 1.17) toward the critical
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temperature of the LJ fluid. The growing influence of the crit-
ical point is apparent in the scatter of the data, which indicates
that finite size effects are important in the supercritical phase.
This phenomenon can be attributed to interactions at inter-
particle separations in the well of the LJ potential because it
occurs both in the presence and absence of WCA interactions.

E. Isochoric and isobaric heat capacities

Values of CV for the LJ fluid at supercritical tempera-
tures have been previously reported by Freasier et al.33 from
Monte Carlo simulations using the conventional fluctuation
formula.17, 18 Our results for the LJ fluid are compared with
these data in Fig. 7(a). At high temperatures (T = 1.8 and
1.6), there is good agreement between the two sets of data.
At T = 1.4, the data are in agreement at most densities, ex-
cept near the maximum in Cv. However at T = 1.3, we ob-
serve a much larger maximum in CV. These differences can
be largely attributed to the fact that Freasier et al.33 truncated
the LJ potential at a cut-off value of 2.5σ . Our calculations are
for the full LJ potential with a cut-off distance of 6.5σ , which
is considerably larger than 2.5σ . It is very well documented34

that properties of fluids are sensitive to this, particularly in
the vicinity of the critical point. At the lower temperatures, a
minimum in CV is also observed at a density of approximately
ρ = 0.6.

A feature of the simulation results that is shared by real
fluids is the observation of a maximum in CV at supercriti-
cal temperatures. As discussed above, in the vicinity of the
critical point the locus of these maxima form a so-called
Widom line.30 Hess et al.35 have previously reported exten-
sive CV data for WCA particles and some LJ data have been
reported recently.16 For any given supercritical isotherm, val-
ues of CV obtained from the WCA potential increase mono-
tonically with increasing density. Our results for the WCA
potential are in good agreement with these data. The absence
of a maximum for the WCA potential indicates that this phe-
nomenon can be attributed to interactions occurring at sepa-
rations corresponding to the minimum of the LJ potential.

Isothermal values of 
CV as a function of density are
illustrated in Fig. 7(b). The relatively small values of 
CV

illustrate the dominance of WCA interactions in determin-
ing the magnitude of CV. A peak in 
CV is observed for all
isotherms but the phenomenon is much more pronounced at
temperatures approaching the critical temperature (ϕ = 1.17
and 1.25). At these temperatures, there is a noticeable scatter
in the data compared with higher temperatures (ϕ = 1.6, 1.8,
and 2.0), which can be attributed to the influence of finite size
effects.35–37 Despite the dominance of WCA interactions in
determining the overall magnitude of CV, it is clear from this
comparison that interactions associated with the well of the
LJ potential are the controlling influence responsible for the
CV maxima.

Isothermal values of Cp for the LJ potential as a function
of density are illustrated in Fig. 8(a). Most of the trends ob-
served in Cp are the same as observed for CV and the same
conclusions can be applied. However, the WCA interactions
have a relatively minor influence on the magnitude of Cp.

TABLE II. Absolute average values of various ratios of heat capacities (χ )
for the LJ and WCA potentials at different temperatures and 0.1 ≤ ρ ≤ 0.7.

χ

ϕ Cp,WCA/Cp,LJ Cp,WCA/
Cp CV,WCA/CV,LJ CV,WCA/
CV

1.17 0.31 0.54 0.86 7.57
1.25 0.39 0.72 0.89 9.59
1.40 0.49 1.03 0.93 13.94
1.60 0.57 1.43 0.95 20.56
1.80 0.64 1.89 0.97 29.84
2.00 0.69 2.29 0.97 37.32

This aspect can be clearly seen by comparing values of 
Cp

(Fig. 8(b)) to Cp (Fig. 8(a)). This means that the relative im-
portance of contributions from WCA and LJ potential well
interactions is reversed compared with their contributions
to CV.

To quantify the relative magnitudes of the contributions
to CV and Cp, for each isotherm we have calculated the abso-
lute average (AA) of quantities “χ” as defined in Table II, i.e.,

AA = 1

N

N∑
i=1

|χi |, (7)

where N is the total number of values of χ at different densi-
ties. The absolute averages of heat capacity ratios calculated
using Eq. (7) are given in Table II.

The AAs of the Cp,V,WCA/Cp,V,LJ ratios increase with tem-
perature, which implies that Cp,V,WCA increases faster than
Cp,V,LJ and that the contribution of the LJ-well is higher at
lower temperatures. The AA of the CV,WCA/CV,LJ ratios is close
to unity in most cases, which implies that the CV,WCA values
are comparable to CV,LJ for each isochore. This is further il-
lustrated by the very high values for the CV,WCA/
CV, ratio
which has a value greater than 37 at a temperature twice the
critical temperature of the LJ fluid. The CV,LJ values are very
small compared with CV,WCA.

The AAs for the Cp,WCA/
Cp ratio also increase with tem-
perature, however the increase is small compared with that
of CV,WCA/
CV ratios. These small AA values highlight that
Cp,WCA is very small compared to Cp,LJ values calculated from
the LJ potential. The contribution of the LJ-well dominates
the magnitude of Cp. For both CV and Cp, the reduction of the
maxima with increasing temperature also coincides with an
increasing contribution of WCA interactions relative to the
LJ potential well.

F. Joule-Thomson coefficient

Values of μJT for the LJ potential and 
μJT are illustrated
in Fig. 9 as functions of density at different constant temper-
atures. As shown in Fig. 9(a), μJT for the LJ fluid decreases
with density along the isotherm, with some fluctuations near
the critical point, attaining a negative value at higher densi-
ties. This means that there is an inversion curve (i.e., locus of
μJT = 0) for the LJ fluid. There are two temperatures at which
μJT = 0: the first one is in the lower density supercritical fluid
part of the phase diagram and the other point39 is when the

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  136.186.72.15 On: Mon, 03 Oct 2016

05:07:17



194502-9 T. M. Yigzawe and R. J. Sadus J. Chem. Phys. 138, 194502 (2013)

fluid approaches the liquid state as p → 0. In the region where
μJT > 0 for the LJ fluid (0.1 ≤ ρ ≤ 0.6), the decrease in
pressure has caused a decrease in temperature which occurs
as a result of lower initial pressure. In the region where μJT

> 0 (ρ ≥ 0.6 for the LJ potential and at all densities for the
WCA potential), the decrease in pressure causes an increase
in temperature, i.e., there will be heating on expansion. The
values of μJT from the WCA are negative at all temperatures
and densities, which is reflected in the larger values of 
μJT

(Fig. 9(b)) compared with μJT for the LJ potential (Fig. 9(a)).
An important consequence of the negative contribution from
WCA interactions is that it makes an inversion curve possible
for the LJ potential.

It should be noted that obtaining the inversion curve is a
challenge for both experimental methods and molecular simu-
lation. The most extensive calculations of the inversion curve
for the LJ fluid have been reported37, 38 from MC simula-
tions. Escobedo and Chen14 reported good results using a MC
multi-histogram re-weighing technique. In contrast, as shown
in Fig. 10, Heyes and Llaguno39 reported considerable diffi-
culties in accurately locating the inversion curve from con-
ventional MD simulation. Kioupis et al.40, 41 addressed this
problem via a specialised constant enthalpy MD algorithm.

To obtain the inversion curve, we first calculated the
density at which μJT is zero for each of the isotherms in
Fig. 9(a). A change in sign takes place when the density is
between 0.6 and 1.0. We then found the corresponding value
of the pressure at that density from Fig. 2(a) for each of the
isotherms. This was achieved by finding the best fit to each
of the isotherms and then using a fitting equation to calcu-
late the pressure at each of the densities where μJT = 0. This
only results in a partial inversion curve because, as shown in
Refs. 42–44, a very large number of simulation results at
ϕ ≥ 4.5 would be required to obtain the complete inversion
curve. The coordinates for the LJ inversion curve extrapolated
in this way from our simulations are given in Table III and a
comparison with literature values is given in Fig. 10.

The comparison in Fig. 10 indicates that our inversion
temperature is in good agreement with the data of Colina
and Müller37 and Kioupis et al.,41 which are consistent with
calculations obtained from a LJ equation of state.45 We did
not observe the difficulties reported by Heyes and Llaguno,39

which suggests that the NV E �P �G MD ensemble is particu-
larly beneficial for this property. As noted above, the inver-
sion curve is difficult to calculate accurately. Escobedo and
Chen14 identified factors such as insufficient cycles to accu-
mulate simulation averages, system size, and cut-off values as
possible sources of discrepancies. Our system size of 2000 is
larger than the 256 (Ref. 14) or 500 (Refs. 14 and 37) parti-
cle simulations reported previously; a large cut-off value was
used; and the averages were accumulated for the equivalent of

TABLE III. Coordinates of the partial Joule-Thomson inversion curve for
the Lennard-Jones fluid.

ϕ 1.0 1.05 1.15 1.2 1.225 1.40 1.60 1.80 2.0
p 0.530 0.615 0.794 0.847 0.894 1.134 1.266 1.329 1.348
ρ 0.637 0.617 0.595 0.589 0.582 0.553 0.510 0.469 0.424

2 × 106 MC cycles compared with 104 (Ref. 37) and 105

(Ref. 14) cycles used elsewhere.

G. Speed of sound

Values of ω0 calculated for the LJ fluid and 
ω0 are illus-
trated in Fig. 11 as a function of density at different constant
temperatures. As shown in Fig. 11(a), ω0 increases with den-
sity along each isotherm without any noticeable fluctuations
near the critical point. The speed of sound approaches a min-
imum value near the critical point. The power law expression
for ω0 at the critical point predicts the speed of sound to be
zero.1

The pressure calculated from the WCA potential is higher
than the value calculated from the LJ potential (Fig. 2(b)).
The speed of sound depends on pressure (see Table I), which
means that values of ω0 for the WCA potential will be
higher than that from the LJ potential. The large contribution
of WCA interactions is evident from the values of 
ω0 in
Fig. 11(b). In the absence of the WCA contribution, ω0 would
have physically unrealistic negative values. This highlights
the important role of repulsion, particularly at small separa-
tions, on the thermodynamic properties of fluids.

H. Maxima and minima of thermodynamic properties

We have observed that αp, CV, and Cp obtained for a
Lennard-Jones fluid have distinct maxima in the supercriti-
cal phase, which is entirely consistent with the behavior of
real fluids. We have also found that both CV and Cp have min-
ima at high densities. To the best of our knowledge Cp minima
have not been reported previously for the Lennard-Jones fluid.
The loci of both maxima and minima for the thermodynamic
properties are illustrated in Fig. 12 in conjunction with the
vapor-liquid phase diagram for a Lennard-Jones fluid.27, 46 It
should be noted that there is a degree of scatter in the simu-
lation data, particularly in the vicinity of the maxima, which
means that the coordinates should be treated as approxima-
tions only.

As temperature is increased, Fig. 12 shows that the locus
of αp maxima veers progressively to densities that are much
less that the critical density (ρ = 0.316, Ref. 27). In common
with the maxima of all thermodynamic quantities, it becomes
less pronounced with increasing temperature and disappears
at an undetermined temperature beyond T = 2.624. This be-
havior is consistent with other work in the literature32 for the
Lennard-Jones fluid.

The behavior of the maxima and minima of CV and Cp

are particularly noteworthy. At all supercritical temperatures,
both a maxima and minima were observed for CV. It is ap-
parent from Fig. 12 that the CV maxima initially occurs at a
density close to the critical density but progressively shifts to
higher densities. In contrast, the CV minima commences from
a relatively high density and progressively shifts to lower den-
sities, that is, the loci of CV maxima and CV minima are appar-
ently converging to a common point or a shared temperature
extreme (TE) after which no further maxima or minima are
observed. We find that the maxima and minima loci can be
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fitted to the same power law as vapor-liquid equilibria and the
densities are consistent with the law of rectilinear diameters,47

i.e.,

ρmin − ρmax = A

∣∣∣∣1 − T

TE

∣∣∣∣
β

(ρmin + ρmax)

2
= ρE + C(TE − T )

⎫⎪⎪⎬
⎪⎪⎭ , (8)

where A and C are constants. Using a value of β = 0.32, we
find that TE,CV

= 1.667, ρE,CV
= 0.382, and pE,CV

= 0.384,
where pE,CV

was obtained from an independent simulation at
conditions corresponding to TE,CV

and ρE,CV
.

Experimental measurements for the isochoric heat capac-
ity at supercritical temperatures have been reported,48 which
exhibit both maxima and minima curves that converge at a
common point. Experimental heat capacity data49 for diethyl
ether provide a recent example of both maxima and minima
behavior. The phenomena observed for the Lennard-Jones
fluid are qualitatively similar except that the minima curve
for diethyl ether first veers to lower densities before connect-
ing to the maxima curve at a density slightly above the critical
density.

At temperatures immediately above the critical point,
only maxima in Cp are observed initially. It is evident from
Fig. 12 that the densities of the maxima of Cp and CV largely
coincide. However, at temperatures above TE,CV

= 1.657,
minima are also observed for Cp. The Cp minima curve com-
mences at much higher densities than the corresponding CV

curve. The position of the Cp minima shifts to lower densi-
ties with increasing temperatures whereas the Cp maxima is
located at progressively higher densities, which indicates that
the convergence of the two curves is likely. It is apparent from
Fig. 12 that the Cp phenomena occur over a much larger range
of both density and temperature than for CV. Equation (8) can
also be used to locate the coordinates of the temperature ex-
treme, which is found at TE,Cp

= 2.905, ρE,Cp
= 0.539, and

pE,Cp
= 2.550.

For a given isotherm, maxima in either CV or Cp corre-
spond to

(
∂Cp,V

∂V

)
T <TE>Tc

= 0(
∂2Cp,V

∂V 2

)
T <TE>Tc

< 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

whereas, the occurrence of minima on the isotherm means

(
∂Cp,V

∂V

)
T <TE>Tc

= 0(
∂2Cp,V

∂V 2

)
T <TE>Tc

> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (10)

The convergence of the maxima and minima curves to a com-
mon point suggests that this is a point of inflection character-

ized by (
∂Cp,V

∂V

)
T =TE

= 0(
∂2Cp,V

∂V 2

)
T =TE

= 0(
∂3Cp,V

∂V 3

)
T =TE

�= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

The critical isotherm of a pure fluid also exhibits an inflection
point in its pressure-volume behavior. The behavior of heat
capacity in the supercritical region appears analogous to the
behavior of pressure at sub-critical isotherms. Experimental
values of pressure are constant along all sub-critical isotherms
within the two-phase region bounded by the coexisting liquid
and vapor densities whereas there is a steep pressure gradient
on either side of the coexistence curve. Similarly, there is a
noticeable heat capacity gradient at densities outside of the re-
gion bounded by the maxima and minima densities. Isotherms
above the critical point display a smooth variation in pressure
at all densities and similar behavior is observed for heat ca-
pacities for isotherms with T > TE.

Previous calculations in the literature32 for the Lennard-
Jones potential indicate that the Cp maxima, which initially
trends towards increasing densities, diverges back to the crit-
ical density at high temperatures. To the best of our knowl-
edge, the existence of Cp minima have not been previously
observed either in the Lennard-Jones fluid or real fluids. This
is in contrast with experimental evidence48, 49 for the exis-
tence of such behavior in CV. The magnitude of the minima
is much less pronounced than the maxima and it diminishes
with increasing temperatures. This means that it could be eas-
ily overlooked, particularly if the density increments are not
sufficiently small. The maxima also diminish with increas-
ing temperature and become more difficult to detect at high
temperatures. Heat capacity measurements in the supercriti-
cal phase are focused primarily in the region of the maxima,
which is often well outside of the region in which minima
are likely to be located. The preference for performing mea-
surements at constant pressure also means that densities cor-
responding to the minima may not be encountered routinely.

The existence of a locus of minima provides a mechanism
for the hitherto largely unexplained termination of the locus
of maxima. The locus of maxima is sometimes interpreted50

as a demarcation point between “gas-like” and “liquid-like”
behavior in the supercritical phase. Assuming that such a de-
scription is valid, then the locus of minima could be logically
interpreted as a second demarcation line.

IV. CONCLUSIONS

The NV E �P �G MD ensemble can be used to directly
obtain all of the thermodynamic properties of supercritical
fluids. The comparison of results obtained for the LJ and
WCA potentials provides insights into the contribution of
intermolecular interaction on thermodynamic properties. An
important insight arising from this work is that the role of
WCA and LJ potential well interactions are different depend-
ing on the thermodynamic property. The complexity of the
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thermodynamic properties in terms of the phase-space func-
tions means that only general observations can be safely made
linking thermodynamic properties to specific interactions.

The temperature dependence of U can be largely at-
tributed to repulsive WCA interactions and in the absence of
such interactions the temperature-dependence of p would be
almost entirely due to the ideal gas term. The contributions of
WCA interactions ensure that the LJ potential has a μJT inver-
sion curve, which has been partially determined in this work.
They also ensure that physically realistic values are obtained
for w0.

Repulsive interactions have an important role in βT,
whereas their contribution to βS is small. The values of γ V

obtained for either the WCA or LJ potentials are almost iden-
tical for a large range of both temperatures and densities. Re-
pulsion has only a small influence of values of 
αp, which
pass through a maximum value at supercritical temperatures
in the proximity of the critical point. This behavior is also
a characteristic of CV and Cp and in both cases it is appar-
ent that it is determined by interactions at separations within
the LJ potential well. The contribution of repulsive interac-
tions dominates the magnitude of CV, whereas the attractive
part of the potential is the largest contributor to Cp. In gen-
eral, we observe that much of the divergent behavior of αp,
βT, CV, and Cp occurs at nearest neighbor separations close
to values corresponding to the minimum of the LJ poten-
tial well and as such the influence of WCA interactions is
minimal.

At supercritical temperatures, both maxima and minima
values of CV and Cp are observed for the Lennard-Jones fluid.
Supercritical CV and Cp maxima and CV minima are well
documented from experimental studies of real fluids. In con-
trast, the existence of a locus of Cp minima has not been ob-
served previously. The maxima and minima loci for both CV

and Cp appear to converge to a common point. We postulate
that the temperature-density behavior of these curves obey the
same power law as the coexistence curve with an exponent of
β = 0.32. The convergence of the two branches of the Cp

curves provides an alternative explanation for the terminating
value of the Cp maxima in supercritical fluids.
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